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Problem Statement

How olfactory system
Computational Problem performs odor
recognition?

Algorithm Compressed Sensing

Biological Feedforward binary
Implementation neurons




Achievements of the paper

* Presents a very simple model for odor recognition which can be solved
exactly and analytically.

 Model is robust to noise. Removal of glomeruli still leads to recovery of
odor identity

* Predictions (consistent with experiments): Response to odorants

Connectivity Rate
(glomeruli->KC)

Drosophila 9% 6.5-12.5%

Glomeruli

Locusts 50% 50%



Nature of Olfactory Stimulus

The olfactory universe consists of N = 104 volatile molecules
Natural odors consists of hundreds of volatile molecules

But only K = 15 (say) are important for perception
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Highly(!) Simplified Model of Olfactory System

* Odor stimulus: s0 (K sparse Nx1 vector) N odor N neurons
components in MC/PCx
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» Recovered signal: s

* Glomerular signal: x (Mx1 vector)

e Want: 5 =50
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Highly(!) Simplified Model of Olfactory System

* Odor stimulus: s0 (K sparse Nx1 vector) N odor N neurons
components in MC/PCx
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Non-linear Compressed Sensing

0
X — H(AS — QC) N odor N neurons
H<M<<R components in MC/PCx
a T 1 1
s=H(W'x—10) : :
0 0
All vectors and matrices are binary ) 0
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: : 0 0
Elements of matrix A are 1 with 0 5
probability p and 0 with probability 1-p 8 8
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Simple Example: N=3, k=1, M= 2
o (o] =y w3

x = H(As" —0) s=H(W'x—0)
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Intuition

 Compression stage implements OR operation. If any input to
OSN(glomeruli) are active then the OSN(glomeruli) get activated.

 Decompression stage implements AND operation. Iff all input to
neurons in MB/PCx are active then the neuron get activated.
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Deducing p by maximizing mutual information

e Want: Maximum odor stimulus information reaches the brain

 Do: Maximize information transfer across the channel (mutual information)

1
- K+1°

e Result: P,

 Meaning: Sparser connections gives you greater odor acuity(?)






Figure 1b
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 SNR ratio decreases as sparsity increases

 For large K, low connectivity probability p
leads to higher SNR
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Figure 2a
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Figure 2b

 SNR increases exponentially with the
number of glomeruli (types of OSNSs)

* Decreasing sparsity(K) of the stimulus
increases the SNR for given number of
glomeruli
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Figure 2c

 SNR ratio decreases as sparsity increases

 Higher M corresponds to higher SNR
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Figure 2d
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Figure 3a
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* Decreasing 0, means neurons in MB/PCx
will be activated with smaller number of
glomeruli

e Pattern completion in MB/PCx can still
recover the signal
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Figure 3b

Threshold 6 Reconstruction
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Figure 4

Comparison with LASSO:
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LASSO performs better than neural network
for sparsity K>30

LASSO limited to 5 iterations performs
worse than neural network for K<60

For large K, LASSO outperforms neural
network
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Strengths and Weaknesses of the Paper

Strengths:

 Simple and easily interpretable model for odor recognition

* Predictions consistent with experiments

Weaknesses:

* Biological realism of the non-linearity is doubtful
* Role of different neural populations is unclear

 Makes very few predictions



Thank You!



Discussion Questions

 What behavioral factors determine sparsity K for an organism?

 \What is the optimal value for SNR?



