A Robust Feedforward Model of the Olfactory System

Yilun Zhang and Tatyana Sharpee (2016)

Presented By:

Achint Kumar 28th May, 2020

Computational Proble Algorithm Biological Implementation

Problem Statement

em	How olfactory system performs odor recognition?
	Compressed Sensing
	Feedforward binary neurons

Achievements of the paper

- exactly and analytically.
- odor identity
- Predictions (consistent with experiments): Response to odorants

	Glomeruli	Connectivity Rate (glomeruli->KC)
Drosophila	9%	6.5-12.5%
Locusts	50%	50%

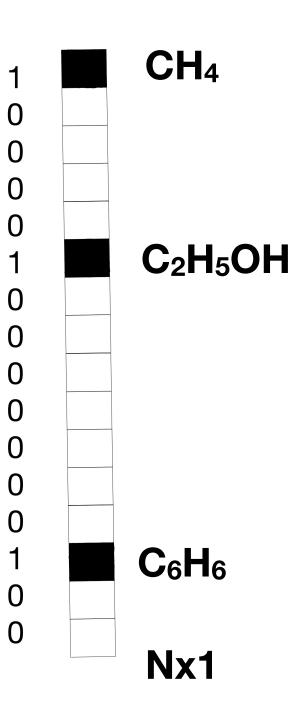
Presents a very simple model for odor recognition which can be solved

Model is robust to noise. Removal of glomeruli still leads to recovery of

Nature of Olfactory Stimulus

- The olfactory universe consists of $N = 10^4$ volatile molecules
- Natural odors consists of hundreds of volatile molecules
- But only K = 15 (say) are important for perception
- Olfactory stimulus vector s⁰:

K=3

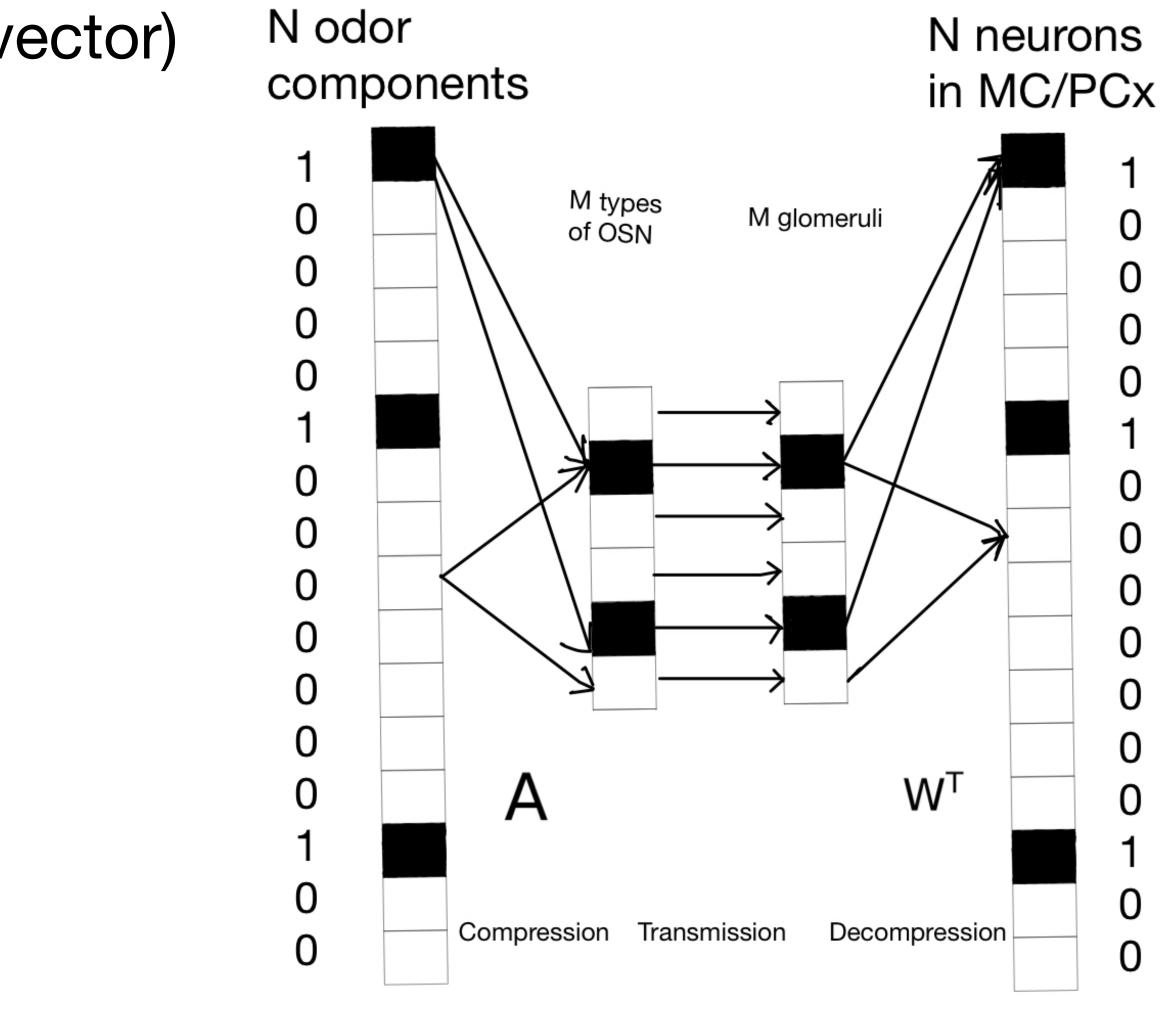


CH₄

Nx1

Highly(!) Simplified Model of Olfactory System

- Odor stimulus: s⁰ (K sparse Nx1 vector)
- Recovered signal: ŝ
- Glomerular signal: x (Mx1 vector)
- Want: $\hat{s} = s^0$



Х

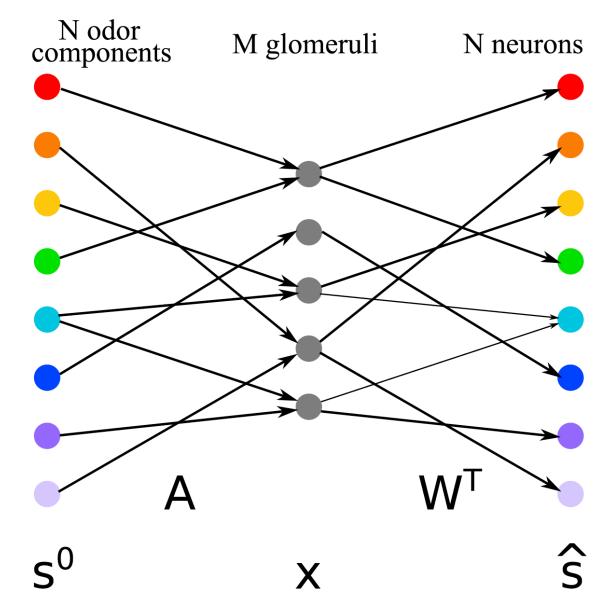
Х

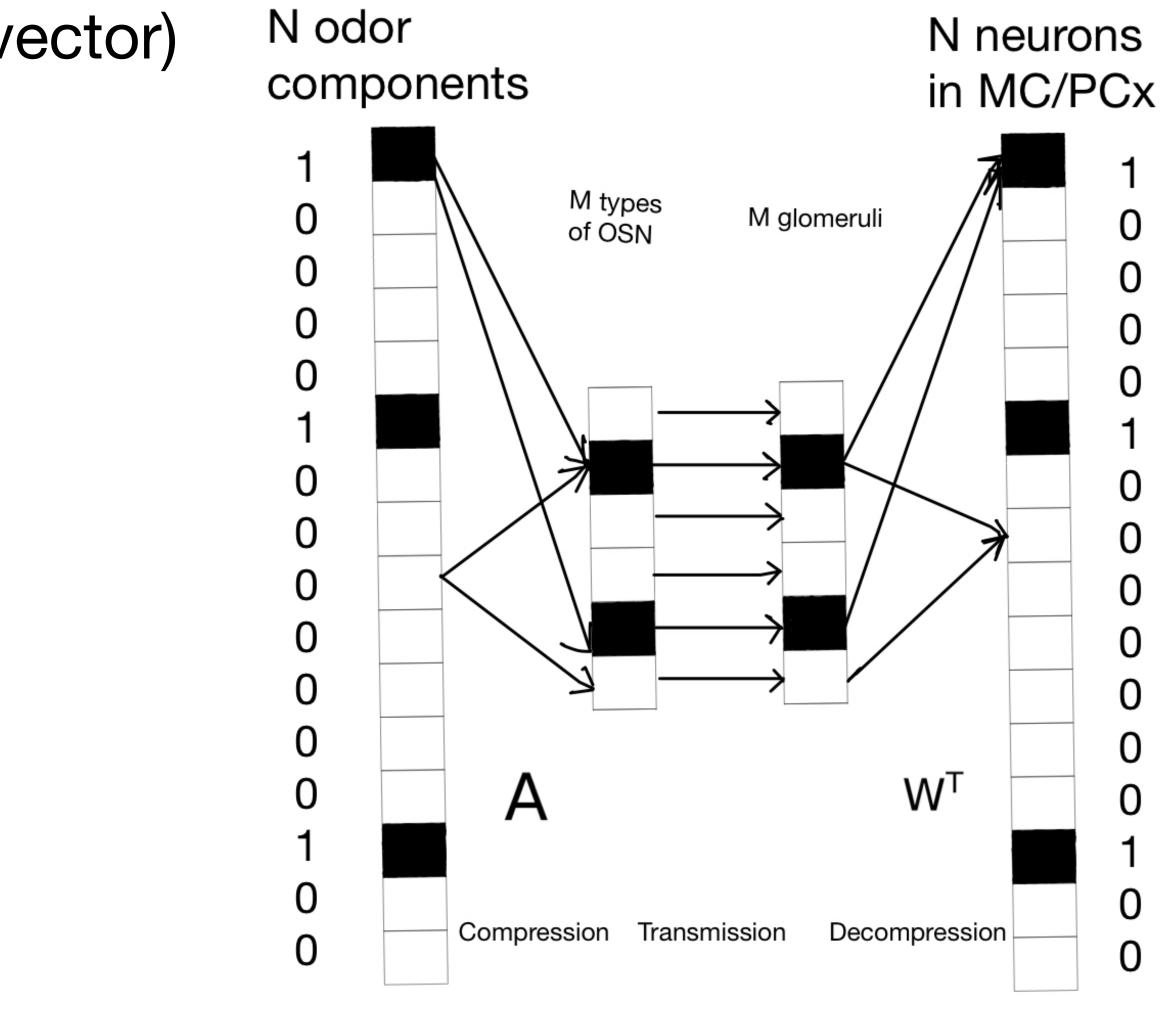
 S^0

ŝ

Highly(!) Simplified Model of Olfactory System

- Odor stimulus: s⁰ (K sparse Nx1 vector)
- Recovered signal: ŝ
- Glomerular signal: x (Mx1 vector)
- Want: $\hat{s} = s^0$





Х

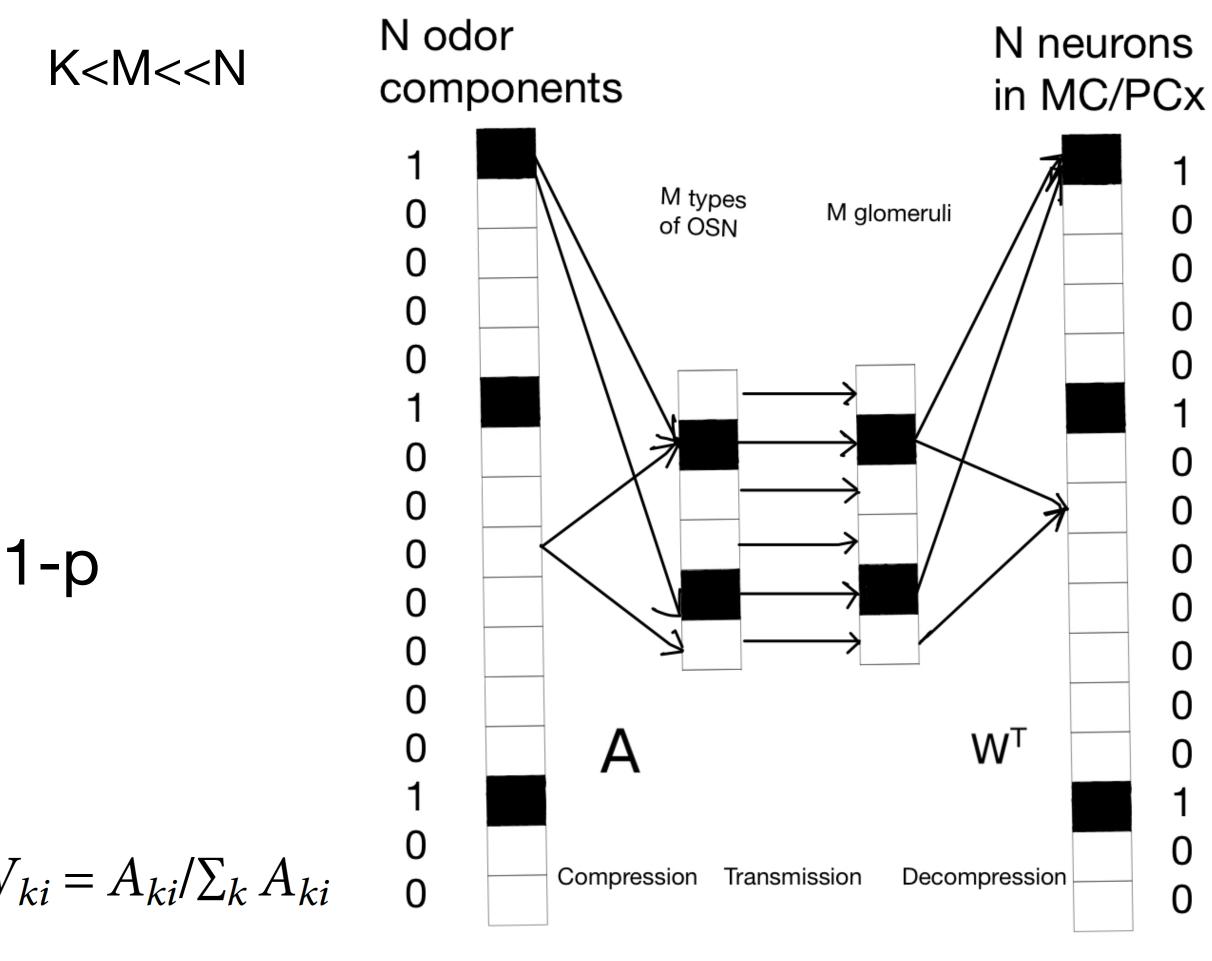
Х

 S^0

ŝ

Non-linear Compressed Sensing $x = \mathcal{H}(As^0 - \theta_c)$ k < M < N $s = \mathcal{H}(W^T x - \theta_r)$ k < M < N $s = \mathcal{H}(W^T x - \theta_r)$ k < M < N $s = \mathcal{H}(W^T x - \theta_r)$ k < M < N k < M < N $s = \mathcal{H}(W^T x - \theta_r)$ k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k < M < N k

- All vectors and matrices are binary
- Elements of matrix A are 1 with probability p and 0 with probability 1-p
- θ_c and θ_r equal to 1 (as vectors)
- The elements are W are given by: $W_{ki} = A_{ki} / \sum_k A_{ki}$



 S^0

Х

Х

ŝ

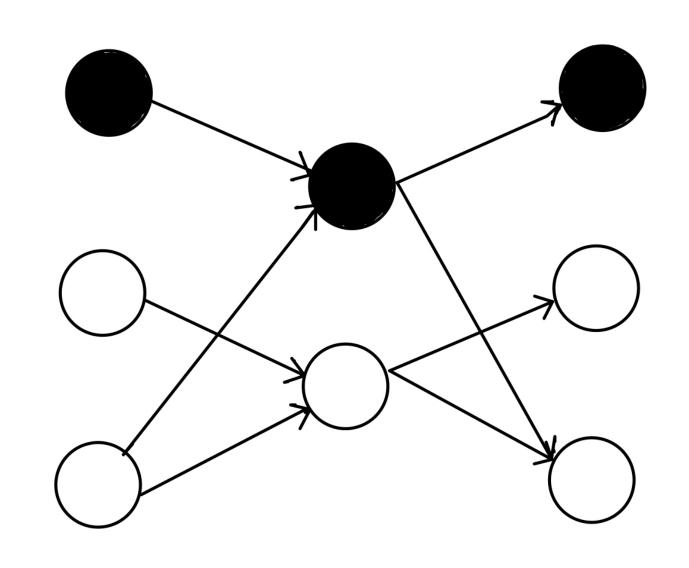
Simple Example: N=3, K=1, M=2 $s^{0} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \qquad \qquad \mathbf{A} = \begin{pmatrix} 1\\0 \end{pmatrix}$

 $x = \mathcal{H}(As^0 - \theta_c)$

$$\hat{s} = \mathcal{H}(W^T x - \theta_r)$$

Intuition

- Compression stage implements OR operation. If **any** input to OSN(glomeruli) are active then the OSN(glomeruli) get activated.
- Decompression stage implements AND operation. Iff **all** input to neurons in MB/PCx are active then the neuron get activated.



Deducing p by maximizing mutual information

- Want: Maximum odor stimulus information reaches the brain

• **Result:**
$$p_m = \frac{1}{K+1}$$
.

• Meaning: Sparser connections gives you greater odor acuity(?)

• Do: Maximize information transfer across the channel (mutual information)

Figures

Figure 1b

$$SNR = \frac{||s^{0}||_{0}}{|\hat{s}||_{0} > -||s^{0}||_{0}} = \frac{K}{(N-K)p_{\text{false}}}$$

- SNR ratio decreases as sparsity increases
- For large K, low connectivity probability p leads to higher SNR

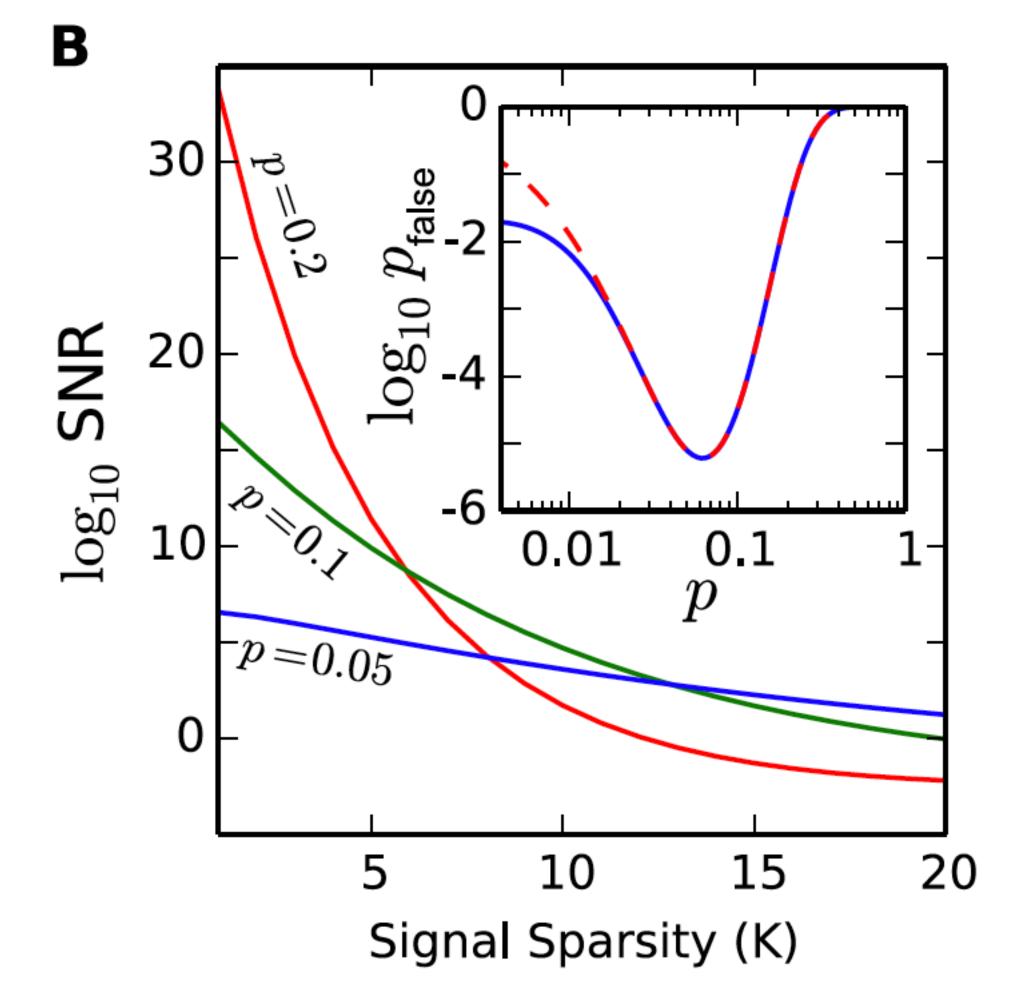


Figure 2a

 Increasing number of glomeruli for a given sparsity increases SNR

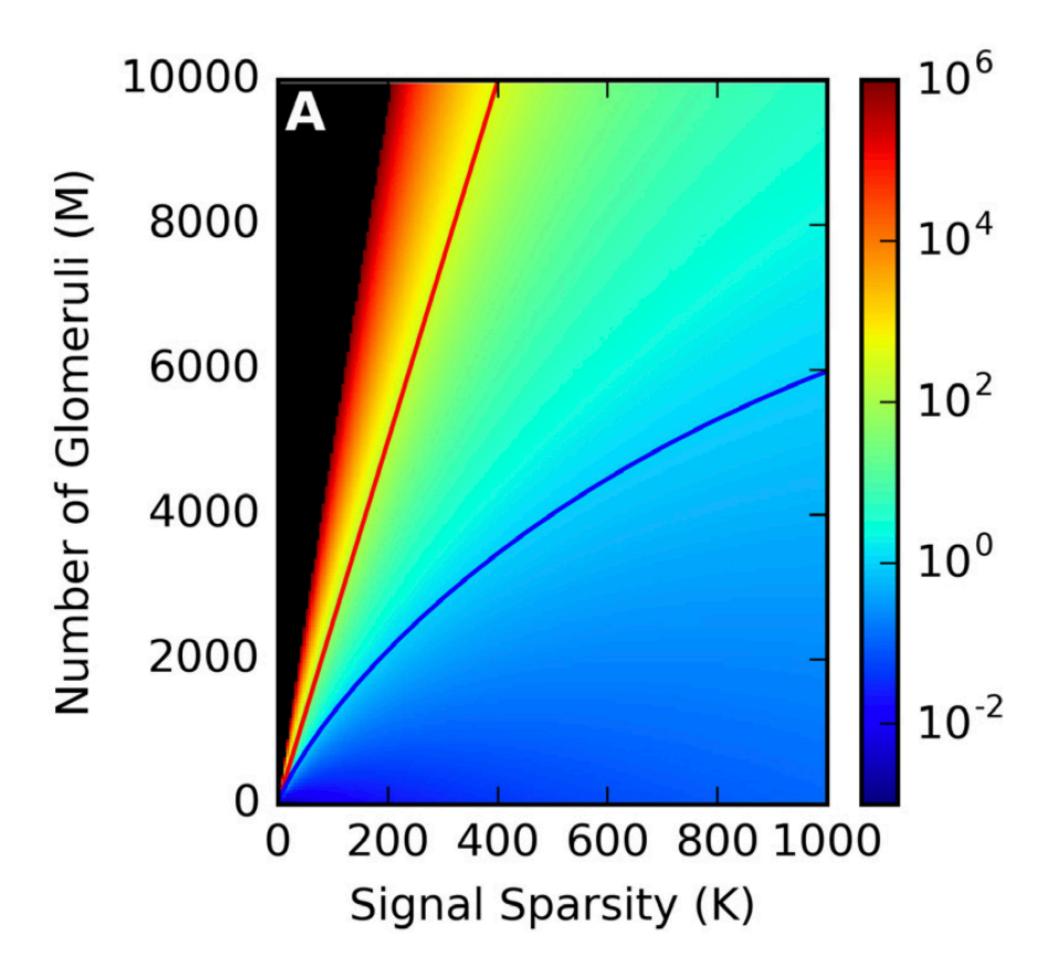


Figure 2b

- SNR increases exponentially with the number of glomeruli (types of OSNs)
- Decreasing sparsity(K) of the stimulus increases the SNR for given number of glomeruli

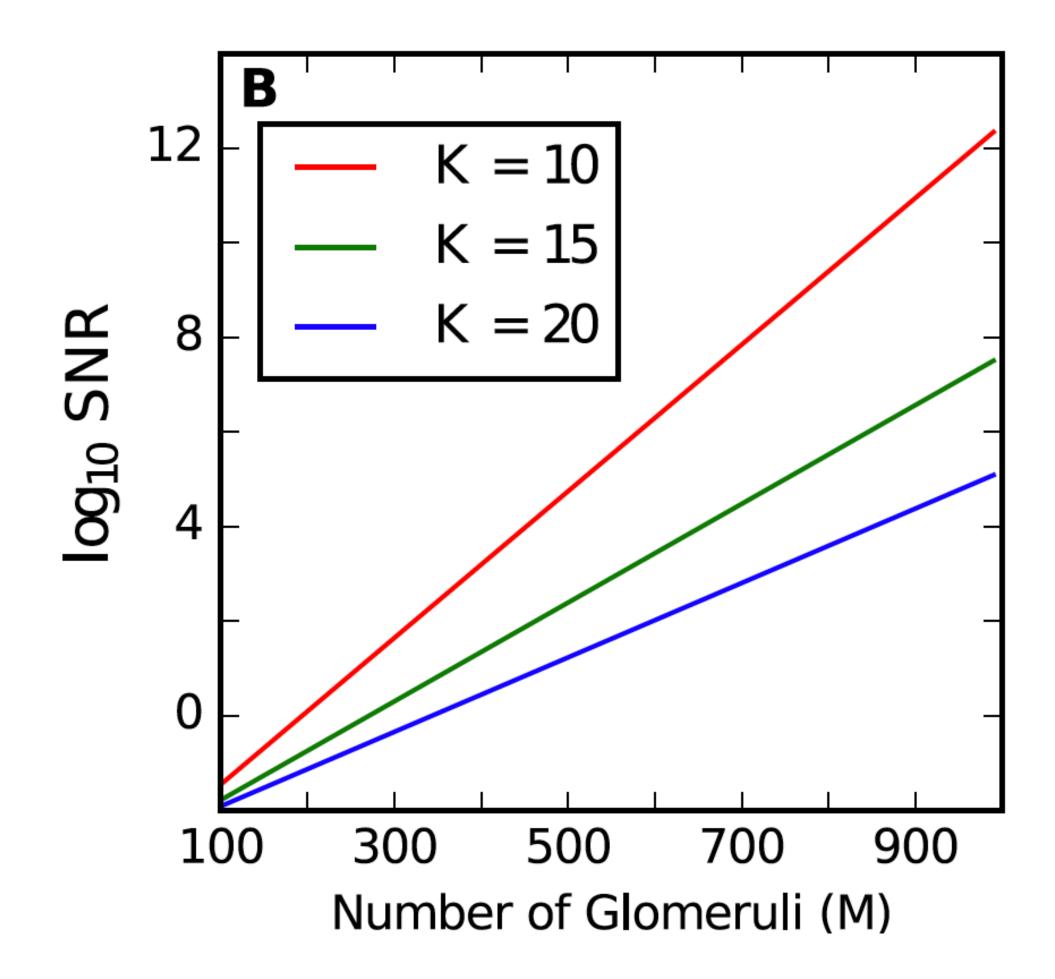


Figure 2c

- SNR ratio decreases as sparsity increases
- Higher M corresponds to higher SNR

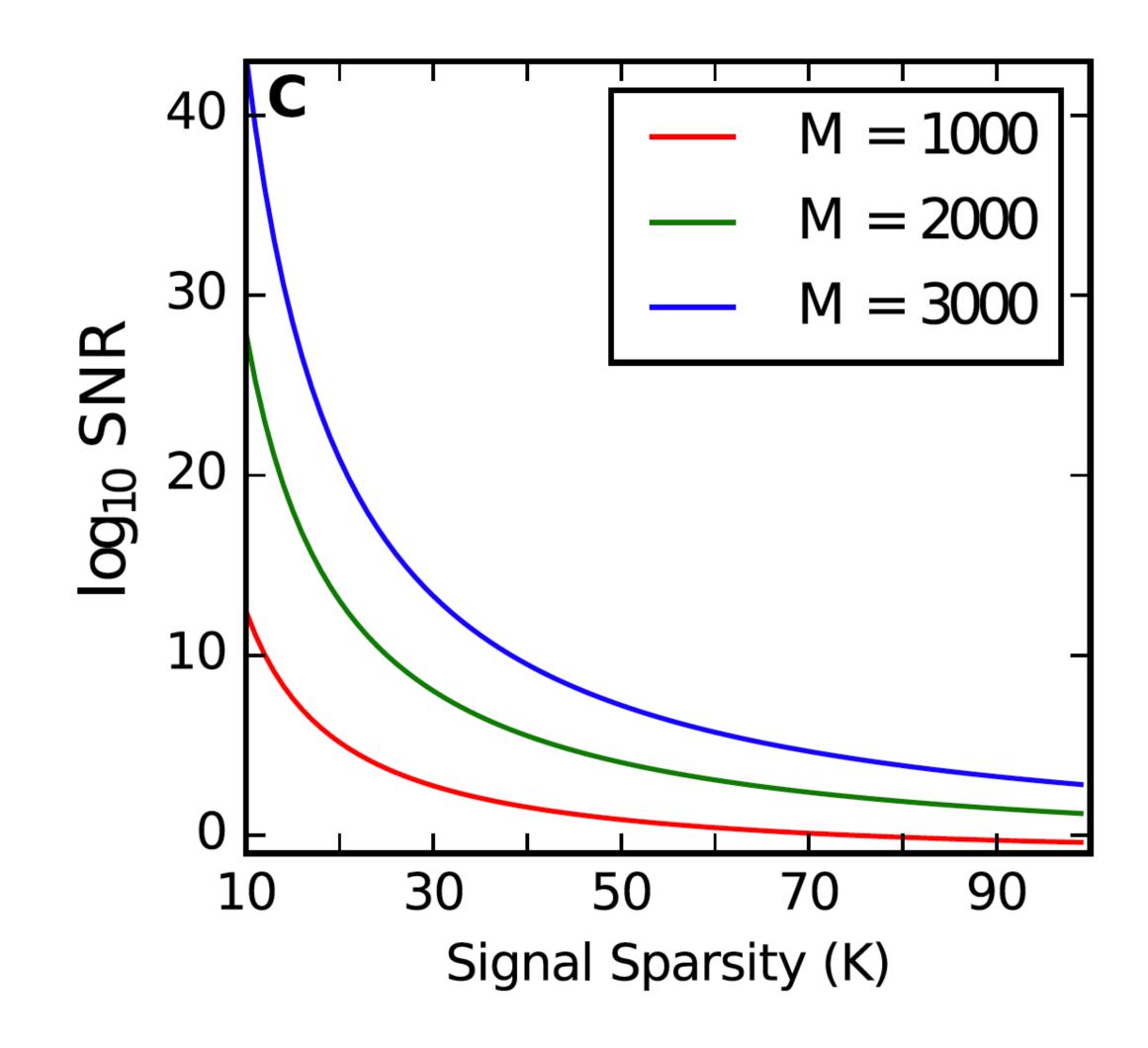


Figure 2d

- More glomeruli per sparsity K means more SNR
- Theoretical limit is the minimum number of glomeruli for reconstruction of signal

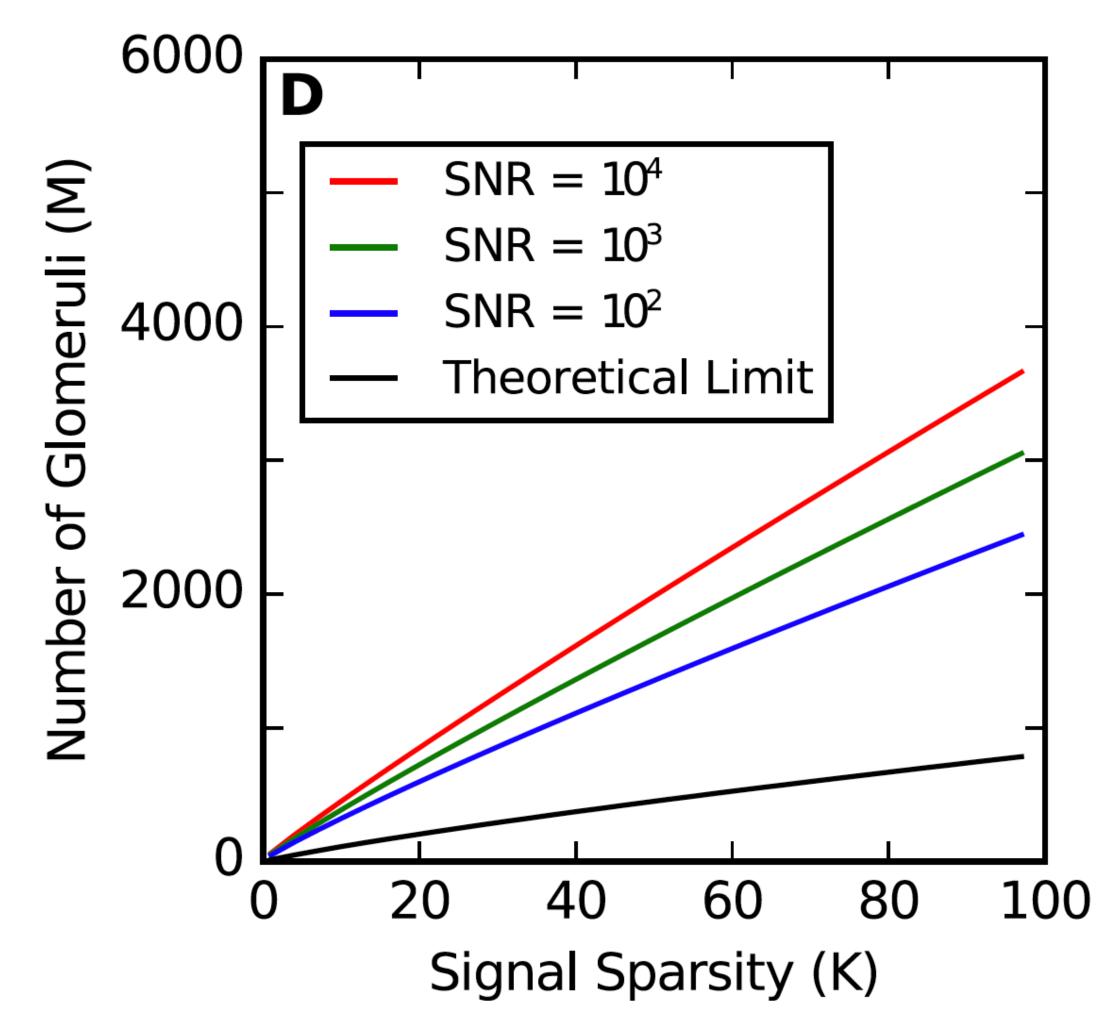


Figure 3a

$\hat{s} = \mathcal{H}(W^T x - \theta_r)$

- Decreasing θ_r means neurons in MB/PCx will be activated with smaller number of glomeruli
- Pattern completion in MB/PCx can still recover the signal

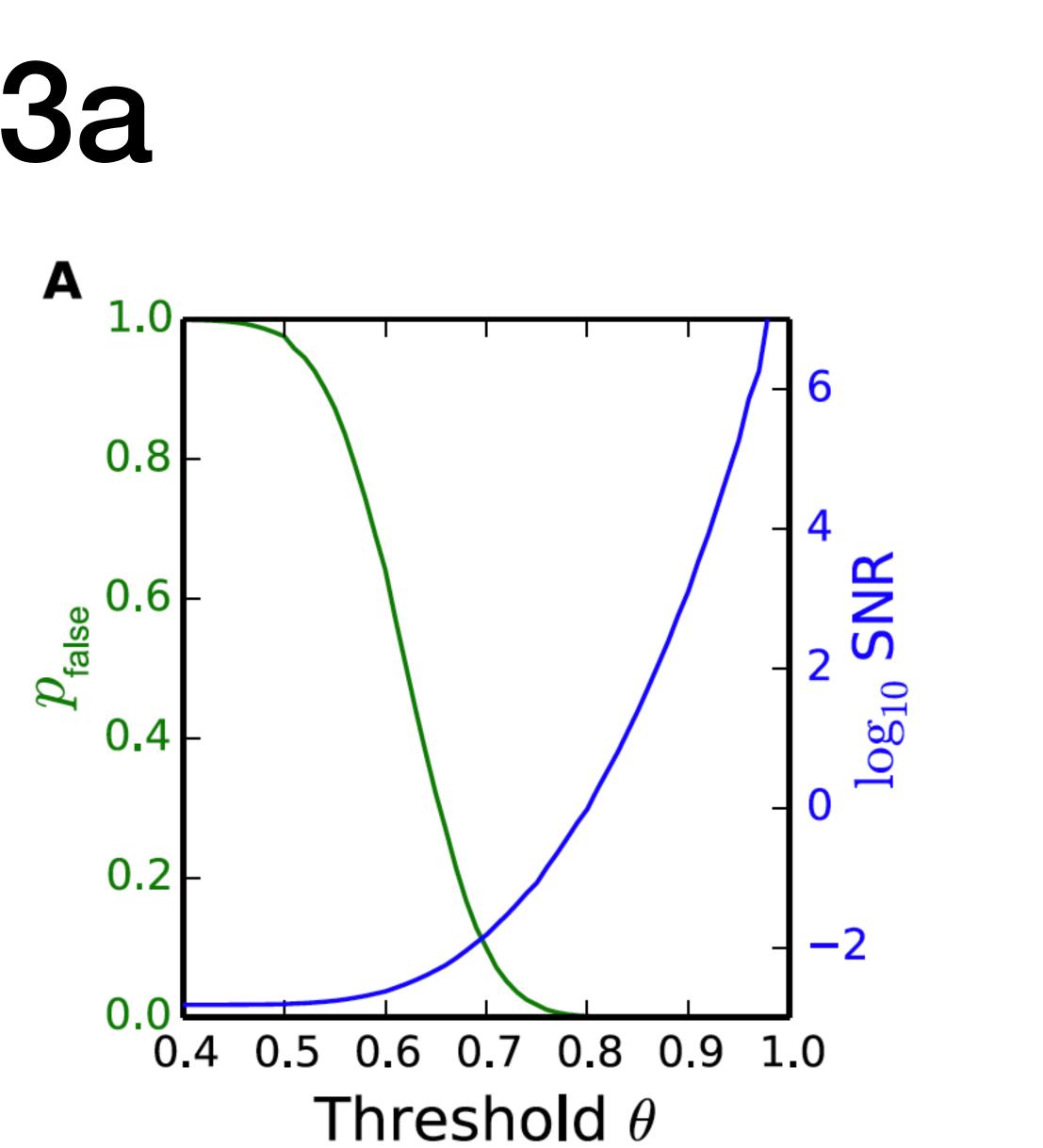


Figure 3b

 Lower threshold leads to corrupt output (poorer reconstruction)

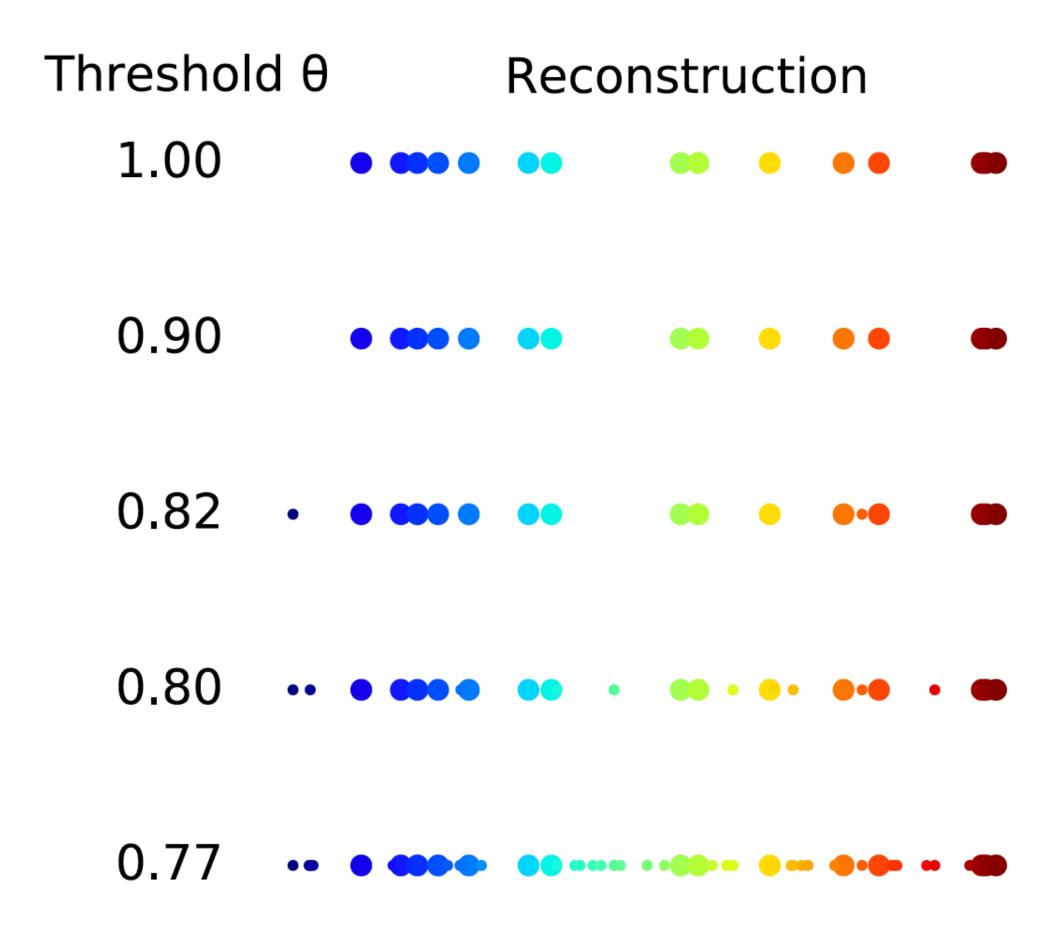
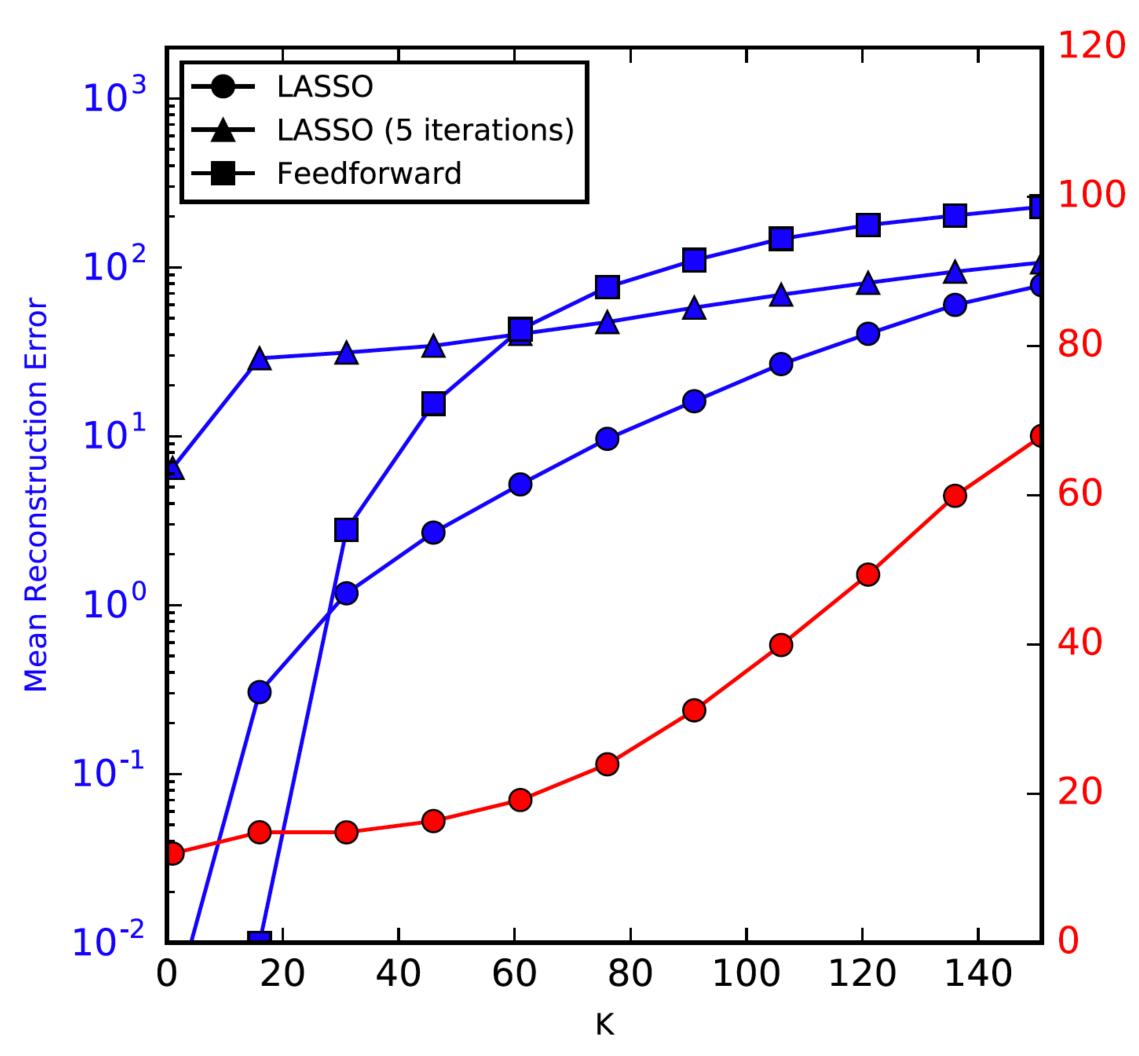


Figure 4

Comparison with LASSO: lacksquare

$$\min_{\hat{s}} \frac{1}{2M} ||A\hat{s} - x||_{2}^{2} + \beta ||\hat{s}||_{1}$$

- LASSO performs better than neural network for sparsity K>30
- LASSO limited to 5 iterations performs ulletworse than neural network for K<60
- For large K, LASSO outperforms neural network



Strengths and Weaknesses of the Paper

Strengths:

- Simple and easily interpretable model for odor recognition
- Predictions consistent with experiments

Weaknesses:

- Biological realism of the non-linearity is doubtful \bullet
- Role of different neural populations is unclear
- Makes very few predictions

Thank You!

Discussion Questions

- What behavioral factors determine sparsity K for an organism?
- What is the optimal value for SNR?