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Stochastic Differential Equations

 Equations with derivatives and noise (‘stochasticity’)

e Consider Lapicque neuron,
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General form of SDE

dV(t)
T
dt

== V(1) + (1)

1 1
= dV, = — —Vdt + —dW,

T T

v

dZ, = u(Z)dt + o(Z)dW,

» /Zt could represent voltage, position, etc

 Sneak peak: The goal of this paper would be to infer the drift and diffusion terms given some data
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General form of SDE
dZ, = w(Z)dt + o(Z)dW,

e If u(Z,) = — aZ, and o(Z,) = constant , then it is called an
Ornstein-Uhlenbeck Process



Gathering data

dZ, = u(Z)dt + o(Z)dw, -

Xy = f(Zy) 0‘2



Another Example: Stochastic Yellow Ball

(a) Yellow ball moving according to a 2D Ornstein-Uhlenbeck process;

dx, = — 4xdt + dW,
dy, = —4ydt + dW,

 Observable: Xt= 64x64x3 dimensional Images representing one realization
of SDE for 1000 time steps

 Goal: How do we infer f, drift and diffusion coefficient of the underlying SDE
3



Autoencoders: Capturing the essence of
the substance

The Bull by Picasso



Variational Autoencoders
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Wish list

* |t would be great if we could interpret the latent dimensions as the x and y
coordinate of center of the yellow ball

* Using these latent dimensions we would like to infer the drift and diffusion
coefficient
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Example: Stochastic Yellow Ball

(a) Yellow ball moving according to a 2D Ornstein-Uhlenbeck process;
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(b) Comparison between the true centers of the ball and
the latent representation learned by the VAE at different
frames of the video;
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(c) Comparison between the true drift coefficient and the
drift coefficient estimated by the VAE;
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Theorem 1: (f, 1, o) cannot be uniquely determined
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Theorem 1: (f, 1, o) cannot be uniquely determined
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Theorem 2: We can make o = | ; by carefully choosing g
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Theorem 3: We can recover the true (f * ,u™) up to an isometry

@) =f*(Qz+Db) w2 = 0 u*(Qz+b)

* |[sometry = (rotation or reflection) + translation. You can also think of it as
distance preserving transformation
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Conclusion

 VAE can allow us infer parameters of stochastic differential equations
 The inferred latent space is interpretable

* They also show how the dimensionality of the latent space can be inferred
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Some reflections

 Can we use the VAE framework to infer parameters of ODEs from the
dynamics?

 What happens if the SDE evolves according to non-Gaussian noise?

 How does one calibrate uncertainty in drift coefficient?
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