
Rapid Bayesian Learning in 
Mammalian Olfactory System

Naoki Hiratani and Peter Latham, 2020


Presented By:

Achint Kumar

1



Central Question

• How olfactory system learns odor identity?


• How olfactory system performs odor-reward association?
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Olfactory System in a Nutshell

4



Problem Setting

• Let c represent a Mx1 vector of odor concentration


• Let x represent a Nx1 vector of glomerular activity


• Goal: Given x, find c
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Goal: Find p(c|x)
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Olfactory Learning as Bayesian Inference
Prelude: Why we need Variational Approximation?


Step 1: Use Variational Approximation to get variational odor and weight 
distributions


Step 2: Minimize KL divergence between variational distributions and the true 
distribution to get iterative relations for the variational distributions 


Step 3: Solve the iterative relations to get expression for the variational 
distributions


Step 4: Show that the parameters of the variational distributions can be learnt 
by neural network dynamics and synaptic plasticity rules
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Prelude: Why variational approximation?
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Step 1: Using Variational Approximation
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Step 2: Minimizing KL divergence
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Step 3: Solving for variational odor distribution 
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Step 4: Inferring the neural dynamics and learning 
rule

• From the variational odor distribution:


• From the variational weight distribution:
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Neural Implementation of Bayesian Learning

Bayesian Learning model maps perfectly 
onto the circuitry of the Olfactory Bulb
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Firing Rate Dynamics before and after learning

• M/T cells show both positive and negative 
responses relative to baseline


• Granule cells show very selective responses 
with activity levels roughly matching the 
concentration of the corresponding odors


• M/T cells response range decreases with 
learning

18



Transfer Function
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Synaptic Plasticity rule

• Learning rate is product of two terms: 1/(t )


• 1/ j  Sj (lifetime sparseness)


• Fixed: 1/(t )=constant


• Global Decay: 1/  = constant

ρ

ρ ∝

ρ

ρ

3 odors presented/trial 7 odors presented/trial
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MAP inference: Quick Introduction

We define an objective function: and maximize with respect to cj and wij

Tootonian, 
Lengyel 2014
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Comparison between Variational and MAP 
inference

• Variational approach doesn’t require fine tuning and learns much faster 
(see a)


• Variational approach leads to lower error in weights (see b)


• Variational approach performs better when there are large number of odor 
sources (see c)
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Conclusion

• Variational Bayesian inference leads to a biologically plausible learning 
rules


• Some predictions are consistent with experiments, others can tested by 
future experiments


• Future work could involve, including periglomerular cells which have been 
implicated in whitening of OB, a natural prediction of circuitry in PCx
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