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Central Question

 How olfactory system learns odor identity?

 How olfactory system performs odor-reward association?
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Olfactory System in a Nutshell
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Problem Setting

p(c;) = (1 —¢cp)d(c;) + Gamma(a, )

 Let c represent a Mx1 vector of odor concentration

* Let x represent a Nx1 vector of glomerular activity p(c)
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Olfactory Learning as Bayesian Inference

Prelude: Why we need Variational Approximation??

Step 1: Use Variational Approximation to get variational odor and weight
distributions

Step 2: Minimize KL divergence between variational distributions and the true
distribution to get iterative relations for the variational distributions

Step 3: Solve the iterative relations to get expression for the variational
distributions

Step 4: Show that the parameters of the variational distributions can be learnt
by neural network dynamics and synaptic plasticity rules
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Prelude: Why variational approximation?
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The goal i1s to evaluate the above integral. The first term in the integrand
is Gaussian distribution, i.e. p(x¢|ci,w) ~ N(We, 1) and we also know the
expression for p(cy). It is the third term which makes it intractable to evaluate
the integral.
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Step 1: Using Variational Approximation

We make the following assumption:

w.t

p(Ct, W|X1.4) = (lt(ctaw‘xlzt) = Hqi.j ("—‘-"'ij‘xlrt) X H(l;((fj‘xlrt)
1] 7

We are basically assuming each element of w;; and¢; are independent. While

this assumption for ¢; is always true but w;; independence is only true at the

beginning of trials and this approximation become progressively worse as the

number of trials increases.
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Step 2: Minimizing KL divergence

p(ce, wlx1:) = ¢ (e, Wlx1:) = H(I;;.t(“-'i.}wxl:t) X H(I;((’J|x1:t)
19 7

We minimize the KL divergence between: p(c;, w|x1.;) and ¢*(c:, w|x1.¢)

q'(ce, w|x1:4)

DI\'L[qt(Ct-W|x1:t)”p(ctaw|x1:t)] — /(chwqf(c,.W|x1:,)log -
. p(cs. w|xXq.¢)

Fyo . . . . . w .t : .
l'aking functional derivative with respect to q:'J (w;;]|x1.¢+) and equating to zero
gives,
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Next, we take functional derivative with respect tog$(c;[x1.:). We are left with
these two relations:

l()g (l:‘;,t ~ (].ogp(x C,W))\,,_,U + <log ])(Wlxl:t 1)>\u_.v,_,

log ¢ ~ (log p(x|c, W))\ﬁ.2 + log p(c¢;)
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Step 3: Solving for variational odor distribution
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Step 4: Inferring the neural dynamics and learning
rule

e From the variational odor distribution:
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Neural Implementation of Bayesian Learning
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Firing Rate Dynamics before and after learning

 M/T cells show both positive and negative
responses relative to baseline

* Granule cells show very selective responses
with activity levels roughly matching the
concentration of the corresponding odors

 M/T cells response range decreases with

learning
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After learning
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Transfer Function
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Synaptic Plasticity rule
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MAP inference: Quick Introduction

By Bayes rule,
p(ct|xt) o p(x¢|ct)p(ct)

So, the Maximum a posteriori estimate is given by:

¢, = arg max p(x,|c, w)p(c)

We define an objective function: E; = logp(x,[c,,w) +logp(c;) and maximize with respect to c; and wj

Tootonian,
Lengyel 2014
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Comparison between Variational and MAP
Inference

e Variational approach doesn’t require fine tuning and learns much faster
(see a)

e Variational approach leads to lower error in weights (see b)

* Variational approach performs better when there are large number of odor
sources (see c)
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Conclusion

» Variational Bayesian inference leads to a biologically plausible learning
rules

 Some predictions are consistent with experiments, others can tested by
future experiments

* Future work could involve, including periglomerular cells which have been
implicated in whitening of OB, a natural prediction of circuitry in PCx
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