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Motion is predicted by retinal ganglion cells

o A flashing bar and moving bar was presented to salamander
retina and response of a ganglion cell was recorded.

@ Retinal ganglion cells are able to predict motion of bar upto
1mm/s speed
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Recording from population of ganglion cells

Information Bottleneck

@ The bar performs a stochastic motion. We record from
many(N ~ 50) ganglion cells and create a binary vector w(t)
representing the spike activity of neurons

@ Question: How much information about bar's position is
encoded in ganglion cells?

Credit: Palmer et.al.. 2015
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How much information about bar's position is encoded in

Information Bottleneck

ganglion cells?

Answer: We need to find mutual information between position at time t’ and spike
activity vector at time t.
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How much information about bar's position is encoded in

Information Bottleneck

ganglion cells?

Answer: We need to find mutual information between position at time t’ and spike
activity vector at time t.

I(we, xpr) = Z P(wt, xpr)log (%)

Wi, Xyt
P
= D P(we)P(xes|we)log (M>
P(xr)
Wt X,

To estimate /(wt, x,/) we do the following:
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Answer: We need to find mutual information between position at time t’ and spike
activity vector at time t.

I(we, xpr) = Z P(wt, xpr)log (%)

_ Z P(Wt)P(xa\Wr)log(%>

Wf7xtl
To estimate /(wt, x,/) we do the following:

@ P(xyp) is univariate distribution and can calculated analytically by solving
Fokker-Planck equation or estimated by frequency analysis
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Information Bottleneck

How much information about bar's position is encoded in
ganglion cells?

Answer: We need to find mutual information between position at time t’ and spike
activity vector at time t.

I(we, xpr) = Z P(wt, xpr)log (%)

Wi, Xyt
P(xe [we) )

= Z P(Wt)P(Xt/\Wt)log( Pxc)

Wty Xyr

To estimate /(wt, x,/) we do the following:

@ P(xyp) is univariate distribution and can calculated analytically by solving
Fokker-Planck equation or estimated by frequency analysis

@ P(w:) is a N dimensional distribution. To prevent undersampling we use N < 7
and then again use frequency analysis to estimate it

© P(xp|wt) is univariate distribution and is estimated by frequency analysis
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Mutual information result

@ Retina is most informative
about the position of the
object at At = —80ms
because of latency in
response.

@ Neural responses carry
information about the
position that extends far into
the past and into the future.

@ Notice bits/spike goes down _
Sllghtly with increasing N. T e e 0 200

. . . At (ms)
Thls |nd|CateS redundant Credit: Palmer et.al., 2015
coding.

)
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Let's focus on future prediction: Information Bottleneck

In Information Bottleneck framework, we assume brain performs a
trade-off between maximally predicting the future while minimally
representing the the past.

P(z|xpast) P(Xfuture|2)
)<P3«St 4 Xfuture
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Let's focus on future prediction: Information Bottleneck

In Information Bottleneck framework, we assume brain performs a
trade-off between maximally predicting the future while minimally
representing the the past.

P(z|xpast) P(Xfuture|2)
)<P3«St 4 Xfuture

The following objective function is minimized,

min L = (Xpast, Z) — BI(Z, Xtuture)
P(z|Xpast)
The parameter (3 sets the trade-off between compression (reducing
the information that we keep about the past, /(Xpast, Z) and
prediction [increasing the information that we keep about the
future, 1(Z, Xeuture)]
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Solving the Information Bottleneck problem

Objective function is:

min L = I(Xpasta Z) - ﬂ/(zyxfuture)

P(2|Xpast)

Since, p(z|xpast) must be normalized, we instead consider the add
a Lagrange multiplier to the objective function.

min L = /(Xpasta Z) - ﬁl(za Xfuture Z )\ Xpast Z|Xpast) 1)

p(z|xpast) Xpast,Z
)
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Solving the Information Bottleneck problem

Objective function is:

min L = I(Xpasta Z) - ﬂ/(zyxfuture)

P(2|Xpast)

Since, p(z|xpast) must be normalized, we instead consider the add
a Lagrange multiplier to the objective function.

min L = /(Xpasta Z) - ﬁl(za Xfuture Z )\ Xpast Z|Xpast) 1)

P(Z‘Xpast) Xpast ,Z
We perform, ﬁfwt) =0 to get,
p(z|Xpast) = €Xp [_5DKL(P(Xfuture|Xpast)| |p(Xfuture‘Z))]

Z5(Xpast)

Note: We don't know p(Xsyture|Xpast) OF P(Xfuture|Z)
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Solving the Information Bottleneck problem:
Blahut-Arimoto algorithm

We have the following set of equations:

p(elxpast) = %exp [~ 8Dk (P(tuturelas PCsturel )] (1)
P(z) = > p(z|xpast) P(xpast) (2)
P(Xfuture|z) = % % p(Xfuture|Xpast)p(zlxpast)p(Xpast) (3)

These can be solved iteratively using Blahut-Arimoto algorithm. In gaussian
information bottleneck framework(coming soon!) these can be solved analytically.
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Retinal population saturate the predictive bound

Recall, IB objective function is:

A
3
forbidden
L= past — /Blfuture 52
g allowed
21
where, =
0
0 2 4 6 8
A Tt (bits)
Ipast = I(Xpast; Z) I

Ifuture £ I(Z, Xfuture)

@ The ganglion cells maximally
encode information about the £
future o

0.2 03 0.4
Tpast. (bits)

Credit: Palmer et.al., 2015
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Gaussian Information Bottleneck(GIB)

Xfuture

P(z|xpast) P(Xfuture|2)
X > Z
past

From now on, in accordance with the paper | will use

X = Xpast,)? =7 and Y = Xpture  In GIB framework, we assume
that p(x,y) is jointly Gaussian. | will assume mean=0 while the
covariance matrix looks like:

s _ (Zx va)
Yxy Xy

X =AX +¢

We must have,

where £ is a gaussian white noise(~ N (0, X¢))
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GIB solution

We have,

X p(X|x), X p(y|%) v
The objective function is,
The compression transformation is,

X=AX+¢

Achint Kumar GIB and NPRG 13 /22



Retinal Computation
Theoretical Framework

Solution

Gaussian Information Bottleneck

Information Bottleneck

GIB solution

We have,

X p(X|x), X p(y|%) v

The objective function is,

L=1(X,X)—-BIX,Y)
The compression transformation is,

X=AX+¢
For any /3, the exact solution turns out to be,
Ye=1

A(8) = diag(a;(B)) VT

The matrix V represents the set of eigenvectors of z;(lzx‘y, and

aj(B) is a complicated function of beta, eigenvalue of Z;lzx‘y,

etc.
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Reparameterization of GIB

The solution to GIB is not unique. Let's say for some 3 we have IB
optimal solutions (A, X¢). Then,

(szf) v,
X T X—=Y

Let's imagine having two latent variables instead.

(Al 7251 ) )'%1 (A2 7252 )

B1 2

X

)?2—)\/

Achint Kumar GIB and NPRG 14 /22



Retinal Computation
Theoretical Framework

Solution

Gaussian Information Bottleneck

Information Bottleneck

Reparameterization of GIB

The solution to GIB is not unique. Let's say for some 3 we have IB
optimal solutions (A, X¢). Then,

(szf) v,
X T X—=Y

Let's imagine having two latent variables instead.

X (A1,):51) )~<1 (A2,252) )~<2 —Y
B1 2
It turns out,
5= B251
B2+ p1—1
A= AA;
Ye=AAl +1
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Semi-group structure of GIB

We have the following composition law:

B251
P2+ p1—1

Direct computations show that the composition operator satisfies
closure and associativity, and thus furnishes the space in which 3
values live, that is R > 1.

B=p20p1=
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Semi-group structure of GIB

We have the following composition law:

B251
P2+ p1—1

Direct computations show that the composition operator satisfies
closure and associativity, and thus furnishes the space in which 3
values live, that is R > 1.

B = oo is the identity element.

B's form with a semi-group structure because there is no inverse.
That is, there is no 8’ such that 8’ o 5 = I(00).

B=p20p1=
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Renormalization Group: Introduction

CHAPTER VIII

THE
THE PARTIAL DIFFERENTIAL EQUATION OF VARIATIONAL
HAMILTON-JACOBI PRINCIPLES OF
MECHANICS
Put off thy shoes from off thy feet, for the place whereon

thou standest is holy ground. EXODUS III, § Cornelius Lanczos

Introduction. We have done considerable mountain climbing. Now we
are in the rarefied atmosphere of theories of excessive beauty and we are
nearing a high plateau on which geometry, optics, mechanics, and wave mech-
anics meet on common ground. Only concentrated thinking, and a consider-
able amount of re-creation, will reveal the full beauty of our subject in which
the last word has not yet been spoken. We start with the integration theory
of Jacobi and continue with Hamilton's own investigations in the realm of
geometrical optics and mechanics. The combination of these two approaches
leads to de Broglie’s and Schroedinger’s great discoveries, and we come to the
end of our journey.

GIB

NPRG 17/22
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mysteries: Why is nature simple?

@ Why simple models of neurons(like LIF or Izhikevich neurons)
are able to reproduce so much of complexity of real neurons?

@ Why Wilson-Cowan equations are able to describe whole
population of neurons using scalar function with scalar
coupling?

© Controversial: Deep learning algorithms employ a generalized
RG-like scheme for feature learning and data compression
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mysteries: Why is nature simple?

@ Why simple models of neurons(like LIF or Izhikevich neurons)
are able to reproduce so much of complexity of real neurons?

@ Why Wilson-Cowan equations are able to describe whole
population of neurons using scalar function with scalar
coupling?

© Controversial: Deep learning algorithms employ a generalized
RG-like scheme for feature learning and data compression

Renormalization group perspective

The degrees of freedom depend on length/time scale we are
probing. The aforementioned models are an effective theory that
represents the effective degrees of freedom at the scale we're
probing. The evolution of parameters as we eliminate the
uninteresting degrees of freedom is what we mean by
renormalization.
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A concrete example

@ In Ising model(or say Hopfield model), one can imagine combining blocks of
neurons together by some rule. This would lead to new degrees of freedom and
new couplings between the neurons.

@ Notice that the coarse-graining process doesn't have an inverse. It is a
semi-group(like IB).

“coarse-graining”

flow in the space
of models

P({ai})

- P({a;})
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Non-perturbative renormalization group

@ Suppose we are given a partition function,

2= e PE / Depe—S(O)+ASIgl+J6

Here AS[¢] is a regulator to ensure convergence of the integral and J is the
source term(like external field).
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Here AS[¢] is a regulator to ensure convergence of the integral and J is the
source term(like external field).

@ Now, we consider a probabilistic mapping ¢ & qb The map follows a
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Non-perturbative renormalization group

@ Suppose we are given a partition function,

2= e PE / Depe—S(O)+ASIgl+J6

Here AS[¢] is a regulator to ensure convergence of the integral and J is the
source term(like external field).

@ Now, we consider a probabilistic mapping ¢ & qb The map follows a

gaussian distribution, p(¢|¢) ~ N (Ad, X).

© The paper gives expressions for flow of A, %, J and parameters defining the
regulator by this mapping. .
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Comparision between GIB and NPRG

@ In GIB, the goal is to find p(X|x) for some §.
@ In NPRG, we are given p(¢~5|¢) and the goal is to find the flow
equations of parameters

© In the paper, the authors highlighted the semi-group structure
and the probabilistic mapping in both frameworks. It remains
unclear how these connections can be brought to actual use in
solving physics/deep learning problems.
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