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Applications of Equipartition Theorem

Equipartition Theorem

In thermal equilibrium, a classical system whose energy is the sum
of n quadratic modes (or degrees of freedom) has a mean energy
given by n × 1

2kT .

Examples:

Mass attached to a spring has a mean energy, 2× 1
2kT = kT

Monoatomic gas molecule has a mean energy, 3× 1
2kT = 3

2kT

Limitations:

Valid only at high temperature, so that discrete nature of
energy can be ignored

Valid in the limit where harmonic approximation holds true
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Light-Beam Galvanometer

Thermal fluctuations set limits on sensitivity of electrical
instruments.

1

2
Iω2

0⟨θ2⟩ =
1

2
kT

So, ⟨θ2⟩ = kT
Iω2

0
is the thermal fluctuation in galvanometer at

temperature T.
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Resonant Circuit-Johnson Noise

What is the fluctuations in the voltage of the inductor?

Mean energy of inductor ⟨E ⟩ = L⟨I 2⟩
2 = 1

2kT . Voltage across
inductor, V = iω0LI . So, ⟨V 2⟩ = ω2

0LkT . This is called Johnson
noise.
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Blackbody radiation

Imagine gas of atoms.

At temperature T, electrons inside the atom will be oscillating
with energy kT (in 1 dimension).

Since, electrons are charged it’ll radiate light into the
environment lowering its temperature.

Imagine that there are mirrors on the walls so that the radiated
light can be reflected back and scatter the electrons again.

Question

What will be the energy spectra of the radiated light at thermal
equilibrium? This light is called the blackbody radiation.

We solve this problem by balancing light radiated and absorbed by
the oscillators per unit time.
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Energy radiated: Classical Oscillator

We assume that electrons oscillate in an atom under harmonic
oscillator potential. We begin by defining quality factor(Q) for the
oscillator:

Q =
energy of oscillator

energy radiated per radian
=

W

dW /dϕ
=

ω0W

dW /dt

Q for an atom is given by, Q = 3c
2r0ω0

∼ 108. Here, r0 is classical
electron radius. So,

dW

dt
=

ω0W

Q
=

2r0ω
2
0W

3c

Averaging over-time and using equipartition theorem in three
dimensions gives,

⟨dW
dt

⟩ = 2

3

r0ω
2
0⟨W ⟩
c

=
2

3

r0ω
2
0(3kT )

c
= 3γkT
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Blackbody radiation: Classical Approach

Energy absorbed by the oscillators

Let I (ω) be the spectral distribution of light which gives the light
energy density at frequency ω. Our goal is to find I (ω). The
cross-section of the oscillators at frequency ω is given by,

σs =
8πr20
3

ω4

(ω2 − ω2
0)

2 + γ2ω2

Since, Q is large we can approximate it as follows,

σs =
2πr20ω

2
0

3[(ω − ω0)2 + γ2/4]

Energy absorbed by the oscillators per unit time is given by,

dWs

dt
=

ˆ ∞

0
I (ω)σs(ω)dω =

ˆ ∞

0

2πr20ω
2
0I (ω)

3[(ω − ω0)2 + γ2/4]
dω
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Blackbody radiation: Classical Approach

Classical Oscillator

Since, σs(ω) is narrowly peaked, we can assume I (ω) is nearly
constant and bring it out of the integral and equate to energy
absorption rate.

dWs

dt
=

2πr20ω
2
0I (ω0)

3

ˆ ∞

0

1

[(ω − ω0)2 + γ2/4]
dω = 3γkT
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Blackbody radiation: Classical Approach

Rayleigh’s law: Ultraviolet Catastrophe

Since our expression for I (ω0) is valid for any ω

I (ω) =
ω2kT

π2c2

This is called Rayleigh’s law
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Blackbody radiation: Quantum Approach

Quantum Oscillator

Planck’s assumption

Harmonic oscillator can oscillate only with energy nℏω where n is
non-negative integer. The idea that they can have any energy is
false.

Probability of occupying energy level E is given by,
P(E ) ∝ e−E/kT = e−ℏω/kT = x . Goal is to find the average energy
of the oscillator at temperature T.
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Quantum Oscillator

Let there be N0 oscillators in ground state E0 = 0.
Total number of oscillators is, Ntot = N0 + N0x + N0x

2 + . . . .
Total energy of the oscillator is, Etot = N0ℏω(0 + 1x + 2x2 + . . . )
Average energy of oscillator is then,

⟨E ⟩ = Etot

Ntot
=

ℏω
e

ℏω
kT − 1

Replacing kT with ⟨E ⟩ gives,

I (ω)dω =
ℏω3

π2c2(e
ℏω
kT − 1)

dω
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Blackbody radiation: Quantum Approach

Johnson noise-revisited

Using Kirchoff’s law,

VR + VC + VL = VG

⇒ IR +
I

jωC
+ IjωL = VG

Solving for I gives,

I =
VG

R + j(ωL − 1/(ωC))
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Blackbody radiation: Quantum Approach

Johnson noise-revisited

Power generated to the resistor by generator G is given by,

P =

ˆ ∞

0
|I |2R dω =

ˆ ∞

0

V 2
G

R2 + (ωL− 1/(ωC )2
R dω

Since, R is small, we have a high Q circuit and we can take
VG (ω) out of the integral to get,

P = V 2
GR

ˆ ∞

0

1

R2 + (ωL− 1/(ωC )2
dω = V 2

GR
π

2RL
= V 2

G

π

2L

Equating to γkTdω. But since, Q = ω0L/R =⇒ γ = R/L. So,
we get,

P(ω) =
V 2
G

R
=

2kT

π
dω
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Random Walk

−→
R N =

−→
R N−1 +

−→
L , squaring it we get,

−→
R N ·

−→
R N =

−→
R 2

N =
−→
R 2

N−1 + 2
−→
R N−1 · L+ L2

⟨
−→
R 2

N⟩ = NL2
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Random Walk

m
d2x

dt2
+ µ

dx

dt
= Fext

Multiply by x and take time average,

m⟨x d
2x

dt2
⟩+ µ⟨x dx

dt
⟩ = ⟨xFext⟩

−⟨mv2⟩+ µ

2

d

dt
⟨x2⟩ = 0

d⟨x2⟩
dt

= 2
kT

µ

But ⟨R2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩.This gives,

⟨R2⟩ = 6kT
t

µ
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