Finite Scalar Quantization: VQ-VAE made simple

Presented by: Achint Kumar

Generative AI Reading Club

October 4, 2023

Desiderata

Introduction

Finite Scalar Quantization (FSQ) vs. VQ-VAE

Figure 1: FSO(left): the final encoder layer projects to d dimensions (d=3 shown). We bound each dimension of the encoder output z to L values (L=3 shown), and then round to integers, resulting in the quantized \hat{z} , the nearest point in this hypercube. VO (right): The final encoder layer projects to d dimensions (d = 7 shown, as d is typically much larger for VQ). The resulting vector z is replaced with the closest vector from the codebook, \hat{z} , by nearest neighbor lookup.

	VQ	FSQ
Quantization	$ \operatorname{argmin}_{c\in\mathcal{C}} z-c $	round(f(z))
Gradients	STE	STE
Aux. Losses	Commitment, codebook,	-
Tricks	entropy loss EMA on codebook,	
***************************************	codebook splitting	-
	projections,	
Parameters	Codebook	-

Finite Scalar Quantization

$$\hat{z} = \text{round}(f(z))$$

where

$$f(z) = \lfloor z \rfloor \tanh(z)$$

To calculate gradient, we again use straight-through estimator (STE):

round_ste :
$$x \mapsto x + sg(\text{round}(x) - x)$$

