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Reward Prediction Error Hypothesis

@ Dopamine neurons in VTA No prediction
were recorded in classical Reward occurs
conditioning experiment population =0 . tstrial end
(Schultz, et.al. 1997) !
@ Define value function, Vst Single DA i
which measures predicted( ) : v Before learn
reward LT |
(no CS) 1 R

@ Dopamine response can be
modelled as, Reward predicted
Reward occurs l
sl LA e i

aluanl T

506 = dv
()7’(&)*;

= r(st) + V(st+1) — V(st)

_(—L After learnin

C!
5(t) is RPE s i
Reward predicted
@ Value function can be learnt No reward occurs
by Temporal Difference(TD) ardue. L Al "
learning algorithm. Update
rule: After learning
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Mult-arm bandit problem

distribution. Find a policy
m(a) that maximizes total

reward:
T &
max » Er[r(a:)] .

Mult-arm bandit (slot machines)

§
e Each bandit(slot machine) [ @
has a reward probability @__
y
§
Y
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Policy Gradient algorithm

@ Parameterize policy with 6 as mg(a;). For bandit problem it could be
softmax function,
efar

HaRa

@ Total average return is,

= > Ea[r(a)]
t=0

@ Perform gradient ascent on 0,

0 0+ aVJ(0)

=0+« Z Z [r(at)VWe(at)]

t=1 at

=0+ az > "[(r(ar) — be)Vmo(a:)], including baseline

t=1 at
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Reinforcement Learning

Value function V(s) = Q(s,a), A(s, a)
Reward function r(a), r(s) — r(a,s)
Policy function m(a) — m(als)

Advantage function is defined as,
A(57 a) = Q(57 a) - V(S)

The elements are closely related to reward r(s, a)
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Classical Conditioning to Reinforcement Learning

We saw for classical conditioning,
V(St) < V(St) + a[r(st) + V(St+1) — V(St)]

For reinforcement learning replace V(s;) — Q(st, at).
Algorithm:
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Classical Conditioning to Reinforcement Learning

We saw for classical conditioning,
V(St) — V(St) + a[r(st) + V(St+1) — V(St)]
For reinforcement learning replace V(s;) — Q(st, at).
Algorithm:
@ Initialize Q(s,a) randomly. Q(FINAL,.)=0
@ Use e—greedy to determine policy m(als)
© Go from state-action s, a; to s¢41 using policy, m(alst).
@ Update action-value function using on-policy learning (SARSA algorithm),
Q(St, at) — Q(St, at) + a[r(st, at) + Q(5t+1, at+1) - Q(Sn at)]

where a4 derived from policy 7(a|st+1).
Alternatively, update action-value function using off-policy learning
(Q-learning algorithm)

Q(st, at) + Q(st, ar) + afr(st, ar) + maaX Q(st11,a) — Q(st, ar)]
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Classical Conditioning to Reinforcement Learning

We saw for classical conditioning,
V(st) + V(st) + afr(se) + V(se41) — V(st)]
For reinforcement learning replace V(s;) — Q(st, at).
Algorithm:
@ Initialize Q(s,a) randomly. Q(FINAL,.)=0
@ Use e—greedy to determine policy m(als)
© Go from state-action s, a; to s¢41 using policy, m(alst).
@ Update action-value function using on-policy learning (SARSA algorithm),

Q(st, at) + Q(st, ar) + afr(st, ar) + Q(se41, ar41) — Q(st, ar)]

where a4 derived from policy 7(a|st+1).
Alternatively, update action-value function using off-policy learning
(Q-learning algorithm)

Q(st, at) + Q(st, ar) + afr(st, ar) + maaX Q(st11,a) — Q(st, ar)]

Repeat 1-4 till s¢41 is final state.

©0

Repeat 5 until Q function stabilizes.
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Q Learning

Q function update rule is given by,
Q(st; ar) < Q(se, ar) + afr(se, ar) + max Q(st+1,a) — Q(se, ar)]

we will see generalization of this rule (soft Q-learning) later.
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Operant Conditioning to Reinforcement Learning

Earlier we saw, policy gradient algorithm.
@ Parameterize policy, mg(a|s) (more general than before)
@ Optimize average expected reward, J(6) by,

9t+1 = 0t + OéVJ(@t)

In actor-critic learning, we parameterize both policy and value(or Q
or A) function. It combines policy gradient with TD learning.

@ Parameterize policy, mg(a|s) with 6 and value, V,,(s) with w.

@ In state s, take action a and observe s” and r(s, a). Update 6
and w by,

W w + a6V Vy(s)
6 < 0 + apdV log mg(als)

where § = r(s,a) + V(s') — V(s)
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Actor-Critic Model

@ Actor: Dorsal Striatum
@ Critic: Ventral Striatum. Sends TD error to actor,

Good action,§d >0
Bad action,d < 0

@ TD Error: VTA

Environment H Environment H
Critic [ )(Critic
E— A I

!

States/Stimuli
%?\%W\ ] PP
DD
Actions
States/Stimuli
Actions

Cortex (multiple areas)
1
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Introduction

© Regular formulation:

H
mﬂax]E tz_; re
@ Maximum entropy formulation
H
m;;axIE g re + BH(7(a¢|st))
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
riational Inference

Motivation-1

@ Stochastic behaviour is more
robust in constantly
changing environments

@ Ability to model suboptimal
behaviour is useful for x
inverse RL (determining
reward function from
behaviour)
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Motivation-2

@ We assume that there are observable binary optimality
variables O; where, O; = 1 denotes time step t is optimal and
O; = 0 denotes that it is not optimal. We define,

p(Or = 1|st, ar) = exp(r(st, at))

Note, all rewards must be negative for normalizability. There
is no loss of generality.

. . . ) . (s1 )= So 1 83 1 84 )
(a) graphical model with states and actions \_ O\

(b) graphical model with optimality variables
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Applying Bayes Rule

Let 7 = {s1.7,a1.7}. By Bayes rule,

p(DP(Or.7 = 1i7)

pr|Or7 = 1) p(O1.T =1)
T
o p(s1) H p(st41lst, ae) exp(r(se, at))
t=1
T T

= | p(s1) [ [ p(stsalse, ar) | exp(D r(se, ar))
t=1 t=1
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Motivation
Probabilistic Inference

Maximum Entropy Reinforcement Learning
Variational Inference

Applying Bayes Rule

Let 7 = {s1.7,a1.7}. By Bayes rule,

p(DP(Or.7 = 1i7)

p(T‘Ol:T - 1) -

p(ol:T = 1)
-
o p(s1) H p(st41lst, ae) exp(r(se, at))
t=1
T T

p(s1) [ [ p(sexlst, ae) | exp(> r(se. at))
t=1 t=1

@ Most probable trajectory is one with highest reward. But
suboptimal trajectories are also possible with exponentially

decreasing probability.
@ Explains stochastic monkey behaviour.
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Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Policy Search as Probabilistic Inference

Goal is to find optimal policy m(at|st, Or. 7). This will be done by
computing backward messages. We will need,

e State-action backward message: [¢(st, at) = p(Or.7|St, a¢). It
is probability of optimality from time t to T given that it
begins at (s¢, at).

e State backward message: [¢(s:) = p(O¢.7]|st). It is probability
of optimality from time t to T given that it begins at s;.

Be(st) = p(Or.7lst) = /p(ot:T‘st’ a:)p(atlst) da
= Eat’vp(aﬂst)[ﬁt(st’ at)]

Action prior, p(a¢|st) is assumed to be uniform without loss of
generality.
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Message Passing Algorithm for backward message-1

The recursive message passing algorithm for computing 5:(s;, at)
proceeds from the last time step t = T backward through time to
t=1. Basecase, att =T,

Be(st,at) = p(OrlsT,ar) = exp(r(st,ar))
Recursive case is given as following,

Bt(sta at) = P(Ol:t|5t, at) = /p(Ot:T75t+1|5ta at)dst—i-l

_p(Ot’5t7at)/P(OtJrl:T’St—&-l)p(st—l—l’St’at)d5t+1

= P(Ot ’Sh at)[Est+1~p(st+1|st,at) [/Bt-i-l(st—‘rl)]
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Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Message Passing Algorithm for backward message-2

@ Base case:

Br(st.at) = p(O7l|sT,ar) = exp(r(st,ar))
Br(stT = Eunp(ar|sr)[B7(sT,a7)]

@ Runloopfromt=T—-1to1l

Bi(st, ar) = p(Otlst, at)Es,, 1 mp(siia|se,ac) [Br+1(St+1)]
Bt(sf) = ]Eatwp(at|st)[5t(5ta at)]
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Connecting to standard RL

Run loop fromt=T —1to1

ﬁt(st, at) = P(Otlst, at)EstHNp(stH\st,at)[ﬂt+l(5t+1)]
Be(st) = anp(ar\st)[ﬁt(sta ar)]

Take logs of both equation.
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Connecting to standard RL

Run loop fromt=T —1to1
ﬁt(st, at) = P(Otlst, at)EstHNp(stH\st,at)[ﬂt+l(5t+1)]

Be(st) = anp(ar\st)[ﬁt(sta ar)]

Take logs of both equation. Define,
V(st) = log Be(st)
Q(st; at) = log Be(st, at)

First equation gives,

Q(Sn ar) =
= r(st, ar) + max V/(s:11) BAD!
St+1

log[p(O¢|st, ac)] + l0g s,y wp(sp.s |se,a0) [€XP[V (st41)]]

21/30
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Motivation
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Connecting to standard RL

Run loop fromt=T —1to1
ﬁt(st, at) = P(Otlst, at)EstHNp(stH\st,at)[ﬂt+l(5t+1)]

Be(st) = anp(ar\st)[ﬁt(sta ar)]

Take logs of both equation. Define,
V(st) = log Be(st)
Q(st; at) = log Be(st, at)

First equation gives,

Q(Sn ar) =
= r(st, ar) + max V/(s:11) BAD!
St+1

IOg[p(Of|St’ at)] + IOg E5t+1’vp(5r+1\5t,3t)[exp[v(st+1)]]

Second equation gives,
V(s:) = Iog/exp(Q(st7 at))da; ~ max Q(st, ar)
t
It is like value iteration algorithm for deterministic dynamics. Problem with

stochastic dynamics.
Achint Kumar CTN Meeting 21/30



Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Computing Optimal Policy

P(3t|5t, Ol:T) = 7T(3t|5t) = P(3t|5t, Ot:T)
P(3t75t|0t:T)
p(5t|0t:T)
P(Or.1lar, st)p(ar, st)/P(Or:1)
P(Or.7lst)p(st)/p(Or:1)
= m =exp(Q — V) = exp(A(st, ar))

Actions with more advantage are exponentially more likely.

A

Sl—)Sz—)Ss—)S4
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Problem with soft value iteration

Recall we had,
Q(st, ar) ~ r(st,ar) + max V(st+1)
V(st) =~ ma?x Q(st, ar)
The problem stems from the fact that,

P(St—i-l’St’ at, Ol:T) 7’5 P(5t+1|5t7 at)

We would like to find another distribution q(s;.7, a;.7) that is
close p(s1.7,a1.7|O1.7) but has the dynamics p(s;y1|st, ar).
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Structured Variational Inference-1

e Find another distribution g(s1.7, a1.7) that is close to
p(s1:7,a1.7|O1.7) but has the dynamics p(s¢y1|st, at).

@ Let x=0;.7 and z = (s1.7, a1.7). Find q(z) to approximate
p(z|x). This can be solved by Variational Inference.

o Let q(sl:T7 al:T) = P(Sl) Ht P(5t+1‘$t, at)q(at\st)
@ @ I’(Ot‘sr-ar)

e O IO p(lx)
@ ‘@ ‘@ dEEEEEN
s1)

p( p(St41lst, ar)
a(ase)
q(sur,avr) @ @ ® q(z)
p(s1) p(St+1[se, a)
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Structured Variational Inference-2

Let x = O1.1 and z = (s1.7, a1.7). Variational lower bound is given by,

log p(x) = E;q(z[log p(x, z) — log q(2)]

Substituting variables we get,

T T
log p(O1.7) >Es, 1.0, 1)~qllog p(s1) + D log p(stsalse, ac) + Y _ log p(Or.7|st, ar)]
t=1 t=1
T T
—log p(se) — Y _ log p(seia|se, a) — > log (ae|se)]
t=1 t=1

T
B T:alzT)Nq[Z r(ste, ar) — log q(ats)]

-
=D Elsranmalr(se, a) + Halarlso)]

t=1
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Motivation
Maximum Entropy Reinforcement Learning Probabilistic Inference
Variational Inference

Structured Variational Inference-3

Optimizing Variational lower bounds leads to soft value iteration
algorithm,

o for t=T-1 to 1:

Q(s,a) < r(s,a) + E[V(s')]
V/(s) + softmax,(Q(s, a))

Traditional value iteration has the form,
o fort=T-1 to 1:

Q(s,a) < r(s,a) + E[V(s')]
V(s) maax(Q(s, a))
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@ Entropy Regularized Policy Gradient
@ Soft actor-critic Algorithm
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Soft Q-Learning
Entropy Regularized Policy Gradient
Some Generalized Algorithms Soft actor-critic Algorithm

Soft Q-Learning

For standard Q-learning,

Q(St7 at) — Q(St7 at) + Oé[f(Sh at) + m‘_.;ax Q(Sf-‘rl: a) - Q(Sl’7 af)]

m(at|st) < e-greedy[argmax,Q(a, st)]
For soft Q-learning,

Qlstrat) = Qlse, ) + alr(se, ae) + softmaxsQ(se-1, ) — Qst, ar)]
m(ar|st) < exp(A(st, ar))
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Soft Q-Learning
Entropy Regularized Policy Gradient
Some Generalized Algorithms Soft actor-critic Algorithm

Policy Gradient

For standard Policy Gradient,
@ Total average return is,

T
J(0) = ZEW [r(st, a¢)]
=0
@ Perform gradient ascent on 0,

.
04 0+aVI(0) =0+ Eanas [(r(se,a) = be)V log mo(at]st)]

t=1
For Entropy Regularized Policy Gradient,

@ Total average return is,
-

J(O0) =Y Ex[r(se, ac) + H(q(arlst))]

t=0
@ Perform gradient ascent on 0,
-

0+ 0+aVJO)=0+ ZE(st,af)w(sf,az)[Vt‘? log qo(at|st)A(st, at)]

t=1
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Soft Q-Learning
Entropy Regularized Policy Gradient
Some Generalized Algorithms Soft actor-critic Algorithm

Soft actor-critic Algorithm

o Critic: Update Q-function to evaluate current policy:
Q(s,a) < r(s,a) + Egrp, an|Q(s', @) — log w(&'|s")]
This converges to Q™.
@ Actor: Update the policy with gradient of information
projection:

1
o = arg i D (/151 exp Q"(5..))

In practice, only take one gradient step on this objective
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