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Bayesian Inference- Problem Statement

Goal

Given a probabilistic model p(x, z) for latent variables z and data x
compute posterior distribution, p(z|x)

Since, computing posterior is intractable one approach is to use
Variational Inference (VI).
In VI, we consider an approximating distribution qθ(z)
parameterized by θ. We optimize θ such that qθ(z) ≈ p(z |x).

Question

Which distance measure KL(qθ||p) or KL(p||qθ) should we use for
optimizing θ?

KL(qθ||p) =
ˆ

qθlog

(
qθ
p

)
dz , KL(p||qθ) =

ˆ
plog

(
p

qθ

)
dz
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KL divergence is asymmetric

We have a distribution p(x) and wish to approximate it with
another distribution qθ(x). There are two ways to do it:

Forward KL(p||qθ)
To find optimal θ we require
normalization wrt p
(computationally expensive)

Mean-seeking, inclusive of
full distribution

Convex in θ, for all
distributions p

Reverse KL(qθ||p)
To find optimal θ we don’t
require normalization wrt p
(computationally cheap)

Mode-seeking, exclusive to
single mode of distribution

Not convex in θ, for
multimodal p

Credit: Deep Learning by Ian Goodfellow, et. al
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Minimizing KL(p||qθ)

KL(p(z |x)||qθ(z)) := Ep(z|x) [logp(z |x)− logqθ(z)]

The gradient with respect to variational parameter θ is given by,

g(θ) = ∇θKL = −Ep(z|x) [∇θlogqθ(z)] = −Ep(z|x) [sθ(z)]

sθ(z) is called score function.
We now look at some proposed methods to minimize g(θ)
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Method 1: Stochastic Gradient Descent with Importance
Sampling

SGD updates are given by,

θk = θk−1 − ϵkg(θk−1)

For gradient g(θ) is estimated by Importance Sampling. So,

g(θ) = −Ep(z|x) [∇θlogqθ(z)] = −Eqθ(z)

[
p(z |x)
qθ(z)

∇θlogqθ(z)

]
If the proposal distribution qθ(z) is not well matched with true
distribution p(z |x) then samples have low effective sample size
which leads to samples having large variance
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Method 2: Stochastic Gradient Descent with MCMC

This idea is described in Markov Score Climbing paper by
Naesseth, 2021. Current paper is built on this work.
The steps involved are:

Create a Markov chain with p(z |x) as the stationary
distribution using MCMC algorithm. This gives the associated
Markov kernel M(z ′|z ; θ).
Samples are not generated independently. New sample
zk ∼ M(.|zk−1; θ)

Compute score, s(zk ; θ) = ∇θlogqθ(zk)

Update θ, θk = θk−1 + ϵks(zk ; θ)

Slow to converge
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Transport Score Climbing: Motivation

Transport Score Climbing(TSC) replaces MCMC of Markov
Score Climbing with Hamiltonian Monte Carlo(HMC) on a
transported space.
HMC in transported space involves sampling from isotropic
Gaussian(easy!) giving samples z0
Normalizing flow learns the map to take the samples from
transported space(z0) to the real space(z).
The samples are used to update the parameters θ of the
posterior qθ(z)
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Hamiltonian Monte Carlo

Sampling technique which combines Hamiltonian dynamics
and MCMC.

Faster than MCMC and works in high dimensions

F = Ma ⇐⇒

dz

dt
=

∂H
∂m

dm

dt
= −∂H

∂q

(1)

Here, H(z ,m) = m2

2M + U(z). But, U(z) = −log[p(z |x)]. The
algorithm has the following steps:

Initialize z0 and m0 ∼ N (0,M).

Evolve (z0,m0) according to Hamiltonian dynamics to (z ,m).

Accept the new state z with probability given by
min{1,exp(δH)} where δH(z ,m) = H(z ,m)−H(z0,m0)
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Transport Map: HMC on Warped Space

HMC takes σmax/σmin iterations to get acceptable samples

HMC is slow if the target distribution has mix of low
curvature and high curvature directions

Non-isotopic Gaussian, Neal’s funnel distribution and Banana
distribution are difficult to efficiently sample from while Isotopic
Gaussian is easy. How about we transport the difficult distributions
to Isotopic Gaussians?
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Normalizing Flows

It is a generative model constructed out of sequence of
invertible transformations f (zi ) based on the change of
variable formula,

p(zi ) = p(zi−1)

∣∣∣∣detdf (zi−1)

dzi−1

∣∣∣∣
Unlike VAE, Normalizing Flows learn the exact data
distribution p(x)

Credit: Lillian Weng
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Synthetic Data Experiment

TSC was trained to learn the funnel and banana distributions.
Both distributions are known to be difficult to sample from
HMC.
Left: VI underestimates uncertainty in sigma
Right: Row 1,3 is Gaussian fit. Row 2,4 is VI fit(left) and
TSC fit(right)
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Theorem

Theorem

The parameter θ of variational distribution converges to a local
optima of the forward KL.

Let θ(t) satisfy the following differential equation,

dθ(t)

dt
= −Ep(z|x)log[sθ(z)], θ(0) = θ0

We need to show that θ(t) has a basin of attraction and converges
to the fixed point in it.
The proof of MSC and TSC is taken from Gu and Kong, 1998 with
close to no modification
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