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Principal Component Analysis

Given n-dimensional data, reduce it to k dimensions along
directions of maximum variance. Steps:

1 Calculate covariance matrix Σ
2 Calculate eigenvalues, vectors of covariance matrix. The

equation is given by,

ΣU = ΛU

Here, Uk correspond to the first k principal components of
data with the corresponding eigenvalues, λ1, . . . , λk
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Problems with PCA

1 Cannot handle missing data

2 Computing eigen-decomposition of covariance matrix is
computationally expensive

3 Inferring optimal number of dimension is not possible.
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Probabilistic PCA (pPCA)
In pPCA, data x is assumed to be generated by an affine transformation of a low dimensional latent vector, z.
Mathematically we have

x = Wz + µ + ϵ.

We assume latent vector follows standard normal distribution, N(0, I) (same as VAEs) and noise ϵ obeys isotropic

normal distribution, N (0, σ2I). So, our starting point is:

Mean, µ Covariance, Σ
Prior, p(z) 0 I

Likelihood, p(x|z) Wz + µ σ2I

From this we can calculate,

Mean, µ Covariance, Σ
Marginal likelihood, p(x) µ C

Posterior, p(z|x) M−1WT (x − µ) σ2M−1

where M = WTW + σ2I and C = WWT + σ2I.
To derive the above expressions use,

p(x) =

∫
p(x|z)p(z)dz

p(x|z) =
p(z|x)p(x)

p(z)
.

Notice, everything obeys normal distribution. Next, we ask what is the optimal (MLE) values of W , µ and σ.
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Maximum Likelihood Estimate of Parameters: µ, σ2,W
The marginal likelihood is given by

p(x) =
N∏
i=1

1

(
√

(2π)n|C |
e
− (xi−µ)2

2C

To find maximum likelihood estimate of parameters, µ, σ2,W we optimize log p(x) as follows:

∂ log p(x)

∂µ
= 0⇒ µMLE =

1

N

N∑
i

xi = ⟨x⟩

This makes intuitive sense in that the latent vector is being translated to the mean value of data, x.

∂ log p(x)

∂σ2
= 0⇒ σ

2
MLE =

1

n − k

n∑
j=k+1

λj

This makes intuitive sense in that σ2
MLE represents average variance lost in projection. The least noise variance

possible is the variance of the last PC λn .

∂ log p(x)

∂W
= 0⇒ WMLE = Uk (Λk − σ

2
MLE I)

1/2R

Uk matrix contains the first k PC of data. This equation is saying, the optimal weights are the principal
components scaled by standard deviation in that direction beyond the intrinsic noise. R is arbitrary rotation matrix.
Let’s think some more...
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Thinking about WMLE

We have,

WMLE = Uk(Λk − σ2
MLE I)1/2R

Notice the following properties:

1 If R = I, then M = W T
MLEWMLE + σ2

MLE I = Λk (useful later)

2 If λj = σ2
MLE then from j th to k dimension, WMLE

corresponding to those directions are zero. This is called
posterior collapse. Corresponding z’s don’t contribute to the
generative process.

Next we find the stability of WMLE by figuring out whether it is a
minima, maxima or saddle point.
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Stability of WMLE
Replace

WMLE = Uk (Λk − σ
2
MLE I)

1/2

by

W = Uk (Kk − σ
2I)1/2

Here, Kk matrix consists of singular values of W. We will now vary σ2 and test the stability of the 5th and 7th

principal components. We find,

1 If σ2 = λ4 (large), then both PC directions are unstable (figure a)

2 If σ2 = λ6 (intermediate), then one PC direction(5th) is stable, other one(7th) is unstable (figure b)

3 If σ2 = λ8 (small), then both the PC directions are stable (figure c)

Lesson: Learning σ2 is necessary for gaining full latent representation.
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Some unclear bits:

Two intriguing points:

1 Even though WMLE is unique upto a rotation, pPCA is
considered unidentifiable. Why?

2 M−1 = (W TW + σ2I)−1 is the pseudo inverse of W TW
matrix. Is there a way to interpret its presence in the
posterior, p(z |x)?

3 The mathematical analysis of stability of W is quite involved.
Can we use the fact that (Λk − σ2I)1/2 becomes imaginary to
claim that those principal components are unstable?
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Linear VAEs
For a generic VAE,

p(z) = N (0, I)

p(x|z) = N (µ, σ2)

q(z|x) = N (µ(x), σ2(x))

For linear VAE,

p(z) = N (0, I)

p(x|z) = N (Wz + µ, σ
2I)

q(z|x) = N (V (x − µ),D)

Here D is a diagonal covariance matrix, used globally for all datapoints.
The output of VAE, x̃ is distributed as,

x̃|x ∼ N (WV (x − µ) + µ,WDWT )

The output of linear VAE is invariant under the following transformation,

W ← WA

V ← A−1V

D ← A−1DA−1

where A is a diagonal matrix.
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Linear VAEs: Lemma 1

Lemma 1

The global maximum of ELBO objective for the linear VAE, is
identical to the global log marginal likelihood of pPCA

Proof: Recall, in pPCA posterior under MLE condition is given by,

p(z |x) = N (M−1
MLEW

T
MLE (x − µMLE ), σ

2
MLEM

−1
MLE ).

For linear VAE, the posterior is q(z |x) = N (V (x −µ),D). If we set

V = M−1W T
MLE D = σ2

MLEM
−1 = σ2

MLEΛ
−1
k µ = µMLE

Then, q(z |x) = p(z |x). In addition if we make decoder weights,
W = WMLE , then we find ELBO = log p(x). ■
This result makes sense since everything in pPCA and linear VAE is
Gaussian.
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Linear VAEs: Corollary 1

Corollary 1

The global maximum of ELBO objective for the linear VAE has the
scaled principal components as the columns of the decoder
network.

Proof follows directly from lemma 1 where we found that that
W = WMLE = Uk(Λk − σ2

MLE I) ■
VAEs is trained by maximizing ELBO and not p(x), so we next ask
if ELBO objective introduces additional local maxima
(Answer: No)
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Linear VAEs: Theorem 1

Theorem 1

The ELBO objective for a linear VAE does not introduce any
additional local maxima to the pPCA model.
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Experiment 1: Comparing ELBO and log-likelihood

Train linear VAE on MNIST dataset for different number of latent
dimensions and compute the ELBO. We observe the following:

1 ELBO(red)= p(x) when σ2 is also trained. As expected from
Lemma 1.

2 If σ2 is fixed then p(x) is smaller.

Achint Kumar Lab Presentation 13 / 16



Probabilistic PCA
Linear VAEs
Experiments

Experiment 2: Comparing analytic ELBO with stochastic
ELBO

We can calculate ELBO exactly for linear VAE. They compare
analytic ELBO expression with estimated ELBO and find that
using analytic ELBO makes training faster.

Achint Kumar Lab Presentation 14 / 16



Probabilistic PCA
Linear VAEs
Experiments

Experiment 3: Effect of non-linear encoder and linear
decoder

Deep linear encoder and non-linear encoders don’t outperform
linear encoder. This is expected since linear VAE is able to learn
optimal posterior.
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Experiment 4: Analysis of non-linear VAEs

Evaluation of deep Gaussian VAEs (averaged over 5 trials) on
real-valued MNIST. We report the ELBO on the training set in all
cases. Collapse percent gives the percentage of latent dimensions
which are within 0.01 KL of the prior for at least 99
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